A Characterization of all Loglinear Inequalities for Three Quermassintegrals of Convex Bodies

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Inequalities for Quermassintegrals and Dual Quermassintegrals of Difference Bodies

In this paper, inequalities for quermassintegrals and dual quermassintegrals of difference bodies are given. In particular, an extension of the Rogers-Shephard inequality is obtained. Mathematics subject classification (2010): 52A40, 52A20.

متن کامل

Inequalities for quermassintegrals on k-convex domains

In this paper, we study the Aleksandrov–Fenchel inequalities for quermassintegrals on a class of nonconvex domains. Our proof uses optimal transport maps as a tool to relate curvature quantities of different orders defined on the boundary of the domain. © 2013 Elsevier Inc. All rights reserved.

متن کامل

Inequalities for dual quermassintegrals of mixed intersection bodies

In this paper, we first introduce a new concept of dual quermassintegral sum function of two star bodies and establish Minkowski's type inequality for dual quermassintegral sum of mixed intersection bodies, which is a general form of the Minkowski inequality for mixed intersection bodies. Then, we give the Aleksandrov– Fenchel inequality and the Brunn–Minkowski inequality for mixed intersection...

متن کامل

Differentiability of Quermassintegrals: a Classification of Convex Bodies

In this paper we characterize the convex bodies in Rn whose quermassintegrals satisfy certain differentiability properties, which answers a question posed by Bol in 1943 for the 3-dimensional space. This result will have unexpected consequences on the behavior of the roots of the Steiner polynomial: we prove that there exist many convex bodies in Rn, for n ≥ 3, not satisfying the inradius condi...

متن کامل

Inequalities for dual quermassintegrals of the radial pth mean bodies

Gardner and Zhang defined the notion of radial pth mean body (p > –1) in the Euclidean space Rn. In this paper, we obtain inequalities for dual quermassintegrals of the radial pth mean bodies. Further, we establish dual quermassintegrals forms of the Zhang projection inequality and the Rogers-Shephard inequality, respectively. Finally, Shephard’s problem concerning the radial pth mean bodies is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1988

ISSN: 0002-9939

DOI: 10.2307/2047012